Muscles do more positive than negative work in human locomotion.
نویسندگان
چکیده
Muscle work during level walking and ascent and descent ramp and stairway walking was assessed in order to explore the proposition that muscles perform more positive than negative work during these locomotion tasks. Thirty four healthy human adults were tested while maintaining a constant average walking velocity in the five gait conditions. Ground reaction force and sagittal plane kinematic data were obtained during the stance phases of these gaits and used in inverse dynamic analyses to calculate joint torques and powers at the hip, knee and ankle. Muscle work was derived as the area under the joint power vs time curves and was partitioned into positive, negative and net components. Dependent t-tests were used to compare positive and negative work in level walking and net joint work between ascent and descent gaits on the ramp and stairs (P<0.010). Total negative and positive work in level walking was -34 J and 50 J, respectively, with the difference in magnitude being statistically significant (P<0.001). Level walking was therefore performed with 16 J of net positive muscle work per step. The magnitude of the net work in ramp ascent was 25% greater than the magnitude of net work in ramp descent (89 vs -71 J m(-1), P<0.010). Similarly, the magnitude of the net work in stair ascent was 43% greater than the magnitude of net work in stair descent (107 vs -75 J step(-1), P<0.000). We identified three potential causes for the reduced negative vs positive work in these locomotion tasks: (1) the larger magnitude of the accelerations induced by the larger ground reaction forces in descending compared to ascending gaits elicited greater energy dissipation in non-muscular tissues, (2) the ground reaction force vector was directed closer to the joint centers in ramp and stair descent compared to ascent, which reduced the load on the muscular tissues and their energy dissipating response, and (3) despite the need to produce negative muscle work in descending gaits, both ramp and stair descent also had positive muscle work to propel the lower extremity upward and forward into the swing phase movement trajectory. We used these data to formulate two novel hypotheses about human locomotion. First, level walking requires muscles to generate a net positive amount of work per gait cycle to overcome energy losses by other tissues. Second, skeletal muscles generate more mechanical energy in gait tasks that raise the center of mass compared to the mechanical energy they dissipate in gait tasks that lower the center of mass, despite equivalent changes in total mechanical energy.
منابع مشابه
External work and potential for elastic storage at the limb joints of running dogs.
The storage and recovery of elastic strain energy in muscles and tendons increases the economy of locomotion in running vertebrates. In this investigation, we compared the negative and positive external work produced at individual limb joints of running dogs to evaluate which muscle-tendon systems contribute to elastic storage and to determine the extent to which the external work of locomotion...
متن کاملMechanical power and work of cat soleus, gastrocnemius and plantaris muscles during locomotion: possible functional significance of muscle design and force patterns.
Electrical activity, forces, power and work of the soleus (SO), the gastrocnemius (GA) and the plantaris (PL) muscles were measured during locomotion in the cat in order to study the functional role of these ankle extensor muscles. Forces and electrical activity (EMG) of the three muscles were measured using home-made force transducers and bipolar, indwelling wire electrodes, respectively, for ...
متن کاملEffect of general fatigue on knee join muscle work and power absorption during stance phase of running
All sustained physical activities subject the body to various levels of fatigue. This is especially evident when running, which is one of the most popular forms of exercise and may be described as a reduction in maximum force production and power output . the purpose of this study was to investigate the effect of running in an exerted state on knee muscles power absorption and work during the ...
متن کاملMechanics and energetics of human locomotion on sand.
Moving about in nature often involves walking or running on a soft yielding substratum such as sand, which has a profound effect on the mechanics and energetics of locomotion. Force platform and cinematographic analyses were used to determine the mechanical work performed by human subjects during walking and running on sand and on a hard surface. Oxygen consumption was used to determine the ene...
متن کاملHuman walking isn't all hard work: evidence of soft tissue contributions to energy dissipation and return.
The muscles and tendons of the lower extremity are generally considered the dominant producers of positive and negative work during gait. However, soft-tissue deformations not captured by joint rotations might also dissipate, store and even return substantial energy to the body. A key locomotion event is the collision of the leg with the ground, which deforms soft tissues appreciably in running...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 210 Pt 19 شماره
صفحات -
تاریخ انتشار 2007